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Abstract  —  In this paper, a 3D unconditionally stable 

ADI-FDTD algorithm without the CFL stability constraint is 
described. We have investigated the computational accuracy 
and the CPU time of this method and compared it with 
conventional FDTD for both uniform and graded meshes. 
Since the ADI-FDTD algorithm is unconditionally stable, the 
selection of the time step is not restricted by stability 
considerations, but the relative error of the ADI-FDTD 
algorithm increases with increasing time step. The numerical 
results show that the saving in CPU time of the ADI-FDTD is 
not dramatic in comparison with the conventional FDTD 
algorithm when the mesh size and computational accuracy of 
both methods are the same. The reduction in the number of 
time steps and hence, CPU time, is offset by reduced 
accuracy. Therefore, the choice of the ADI-FDTD method is 
governed by the acceptable error.   

I. INTRODUCTION 

The finite–difference time–domain (FDTD) method is a 
popular method due to its versatility and ability to provide 
accurate predictions of electromagnetic field behavior. The 
maximum time step is limited by the minimum spatial 
discretization interval as defined by the Courant-Friedrich-
Levy (CFL) stability condition. However, there are some 
important potential applications of the FDTD technique 
where the CFL stability constraint is too restrictive, 
particularly when the cell size needed to resolve the finest 
geometric detail is very small.  

The non-uniform grid FDTD algorithm is able to handle 
such situations since it can easily conform to such fine 
scale geometric details without substantially increasing the 
overall mesh size and without losing computational 
accuracy. However, the CFL stability constraint cannot be 
relaxed. The maximum time step ∆tmax is still determined 
by the minimum spatial cell size. The ∆tmax, in turn, 
determines the total number of time step needed to 
complete the simulation.  

To circumvent the stability constraint, the alternating 
direction implicit finite-difference time-domain (ADI-
FDTD) method has recently been introduced for solving 
electromagnetic wave problems [1-3]. The scheme is 
based on an alternating direction implicit technique and 
the conventional FDTD algorithm. Since this method is 
unconditionally stable, the time step can be arbitrarily 

chosen without regard for the CFL constraint [2,3]. This 
technique has thus the potential to cut the number of time 
step by several orders of magnitude. Unfortunately, the 
simulating accuracy will decrease with increasing time 
step. We therefore decided to investigate the 
computational accuracy and CPU time of the ADI-FDTD 
algorithm and to compare them with the performance of 
the conventional FDTD algorithm. Both uniform and non-
uniform (graded) meshes were employed in this study. 

II. THEORETICAL FORMULATION  
The non-uniform FDTD algorithm is based on a 

discretization of Maxwell’s equations in their integral form 
in the non-uniform grid shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Non-uniform discretization grid in two-dimension 

In the ADI-FDTD algorithm, the conventional FDTD 
update procedure leading from the nth time step to the 
(n+1)th time step is broken up into two sub-steps. All field 
components are computed with these two sub-steps: 

(1) The first sub-step:  The updating equations from the 
nth time step to the (n+1/2)th time step are: 
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In each of the above equations, the first finite-difference 

on the right-hand side is evaluated implicitly from 
unknown field data at the same time step n+1/2 as for the 
left-hand side field component, while the second finite-
difference on the right-hand side is evaluated explicitly 
from known field data at the time step n.  

(2) The second sub-step:  The updating equations from 
the (n+1/2)th time step to the (n+1)th time step are: 
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In each of the above equations, the second finite-
difference on the right-hand side is evaluated implicitly 
from as-yet unknown field data at the same time step 
(n+1) of the left-hand side field component, while the first 
finite-difference on the right-hand side is evaluated 
explicitly from known field data at the time step n+1/2 
previously computed using (1). 

The system of equations summarized above for each 
sub-step cannot be directly used for numerical 
computation because some field components on the right-
hand side of each equation are synchronous with the field 
component solved on the left-hand side. But they can be 
greatly simplified. For the first sub-step, this is done by 
substituting the expressions of (1d-f) for the H-field 
components evaluated at time step n+1/2 into the E-field 
updating equations of (1a-c). This yields new updating 
equations for all E-field components. As an example, Eq. 
(3) is the new updating equation for the Ex component. 

Similarly, for the second sub-step, this is done by 
substituting the expressions of (2d-f) for the H-field 
components evaluated at time step n+1 into the E-field 
updating equations of (2a-c). This yields new updating 
equations for all E-field components at the time step n+1. 
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As an example, Eq. (4) is the new updating equation for 
the Ex field component. 

[ ]

[ ]n
kjiy

n
kjiy

kjikji

kjibkjib

n
kjiy

n
kjiy

kjikji

kjibkjib

kji

n
kjiz

n
kjiz

kjib

kji

n
kjiy

n
kjiy

kjib

n
kjixkjia

n
kjix

kjikji

kjibkjib

n
kjix

kjikji

kjibkjib

n
kjix

kjikji

kjibkjib

kjikji

kjibkjib

EE
xhy

DC

EE
xhy

DC

hy

HH
C

hz
HH

C

EC

E
yhy

DC

E
yhy

DC

E
yhy

DC
yhy

DC

,2/1,,2/1,1
,2/1,2/1,,2/1

,2/1,2/1,,2/1

,2/1,,2/1,1
,2/1,2/1,,2/1

,2/1,2/1,,2/1

,,2/1

,2/1,2/1,2/1,2/1

,,2/1

,,2/1

2/1,,2/12/1,,2/1

,,2/1

,,2/1,,2/1

2/1
,1,2/1

,2/1,2/1,,2/1

,2/1,2/1,2/1,

2/1
,1,2/1

,2/1,2/1,,2/1

,2/1,2/1,2/1,

2/1
,,2/1

2/1,2/1,,,2/1

2/1,2/1,,2/1,

2/1,2/1,,,2/1

2/1,2/1,,2/1,

(3)                       

)1(

−−+
−++

−++

+++
+++

+++

+

−+++

+

+

−+++

+

++

+
++

+++

+++

+
−+

−++

−++

+
+

+++

+++

−++

−++

−
∆∆

+

−
∆∆

−















∆

−
+













∆
−

−

=

∆∆
−

∆∆
−

∆∆
+

∆∆
+

                      

[ ]

[ ]2/1
2/1,,

2/1
2/1,,1

,2/1,2/1,,2/1

,2/1,2/1,,2/1

2/1
2/1,,

2/1
2/1,,1

,2/1,2/1,,2/1

,2/1,2/1,,2/1

,,2/1

2/1
,2/1,2/1

2/1
,2/1,2/1

,,2/1

,,2/1

2/1
2/1,,2/1

2/1
2/1,,2/1

,,2/1

2/1
,,2/1,,2/1

1
1,,2/1

2/1,,2/1,,2/1

2/1,,2/1,2/1,

1
1,,2/1

2/1,,2/1,,2/1

2/1,,2/1,2/1,

1
,,2/1

2/1,2/1,,,2/1

2/1,2/1,,2/1,

2/1,2/1,,,2/1

2/1,2/1,,2/1,

)4(                        

)1(

+
−

+
−+

−++

−++

+
+

+
++

+++

+++

+

+
−+

+
++

+

+

+
−+

+
++

+

+
++

+
++

+++

+++

+
−+

−++

−++

+
+

+++

+++

−++

−++

−
∆∆

+

−
∆∆

−















∆

−
+













∆
−

−

=

∆∆
−

∆∆
−

∆∆
+

∆∆
+

n
kjiz

n
kjiz

kjikji

kjibkjib

n
kjiz

n
kjiz

kjikji

kjibkjib

kji

n
kjiz

n
kjiz

kjib

kji

n
kjiy

n
kjiy

kjib

n
kjixkjia

n
kjix

kjikji

kjibkjib

n
kjix

kjikji

kjibkjib

n
kjix

kjikji

kjibkjib

kjikji

kjibkjib

EE
xhz

DC

EE
xhz

DC

hy

HH
C

hz
HH

C

EC

E
zhz

DC

E
zhz

DC

E
zhz

DC
zhz

DC

 

Eq. (3) shows that the Ex field component at the node 
(i+1/2,j,k) is coupled with those at the node (i+1/2,j+1,k) 
and the node (i+1/2,j-1,k). This leads to a set of 

simultaneous equations for Ex when written for each j 
coordinate along a y-directed line through the space 
lattice. The matrix associated with this system is 
tridiagonal, and hence, can be easily solved. This process 
is repeated for each y-cut through the grid where Ex 
components are located. All E field components in both 
sub-steps have the same characteristics. 

The H field updating equations (1d-f) and (2d-f) are 
now fully explicit because all of their required E field 
component data at the time step n+1/2 and time step n+1 
are available after all new E field updating equations have 
been solved in the manner described above.  

For the uniform grid ADI-FDTD algorithm, the Eq. (3) 
and (4) can be further simplified by setting ∆hx=∆x, 
∆hy=∆y and ∆hz=∆z. 

III. NUMERICAL INVESTIGATION 

Since the ADI-FDTD is always stable [2,3], the 
selection of the time step is no longer restricted by 
stability, but the relative error of the ADI-FDTD scheme 
increases with the time step chosen. To compare the 
performance of the ADI-FDTD and conventional FDTD 
algorithms, we have solved the two numerical examples 
presented below. All simulations were performed on a 450 
MHz Pentium-II with 128MB of memory under Windows 
2000.  The CPU times do not include the time used for 
Discrete Fourier Transform (DFT) calculations. 

A.  Cavity Half-filled With Dielectric Material 

A 7.112mm x 3.556mm x 5.334mm rectangular cavity 
was modeled with both ADI-FDTD and conventional 
FDTD. One half of the cavity was filled with air and the 
other half with the dielectric material of relative 
permittivity 2.22. For both algorithms, a uniform mesh 
with ∆l =0.3556mm was used, yielding a mesh with 
20×10×15 cells. A time step ∆tFDTD=0.593ps was chosen 
for the conventional FDTD, while several different time 
steps ∆tADI were used with the ADI-FDTD to check its 
accuracy. The physical simulation time of 10,000∆tFDTD 
was kept the same in all cases. Fig. 2 shows the relative 
error in the first two resonant frequencies obtained with 
ADI-FDTD. The relative error affecting the conventional 
FDTD algorithm was virtually the same as for ADI-FDTD 
when the time steps were identical (∆tADI=∆tFDTD). Fig. 2 
also shows the ratio of the CPU-time required by ADI-
FDTD and that required by the conventional FDTD. Fig. 2 
shows that although the ADI-FDTD algorithm is 
unconditionally stable, the relative error quickly increases 
with the length of the time step. A reduction in the number 
of time steps and hence, in the CPU time, is obtained at the 
expense of a larger computational error. 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE
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Fig. 2.  Relative error in resonant frequencies, and CPU time 
ratio of ADI-FDTD, vs. the time step ratio ∆tADI /∆tFDTD. (The 
analytical values of the resonant frequencies are 34.87GHz and 
49.70GHz, respectively) 

B. Inhomogeneous Rectangular Cavity With Two Fins 

The conventional FDTD algorithm with a non-uniform 
mesh yields better accuracy than uniform meshing when 
field singularities are present. Unfortunately, the maximum 
stable time step is still limited by the smallest spatial 
discretization interval. We compared the performance of 
the regular FDTD and ADI-FDTD algorithms with a 
graded mesh as well. 

The geometry of the cavity is shown in Fig. 3. The 
cavity was discretized by a smoothly graded mesh shown 
in Fig. 4. The mesh size was 30x60x30 cells. 

 

 

 

 

 
 

Fig. 3  Inhomogeneous rectangular finline cavity 

 
 
 
 
 
 
 
 

Fig. 4  The graded mesh in the x-y cross-section 

Fig. 5 shows the relative error in the first two resonant 
frequencies obtained with ADI-FDTD. However, in this 
case, the computational resonant frequencies obtained by 
the conventional FDTD algorithm were considered as the 
reference values. For comparison, the ratio of the required 
CPU-times for ADI-FDTD and conventional FDTD is also 

shown in Fig. 5. Both the relative error and the CPU time 
are greatly reduced in the graded mesh. But the tendencies 
of all curves are similar to those obtained in the uniform 
mesh.  When the ADI-FDTD is run with about 3 to 5 times 
the time step of the conventional FDTD for the same mesh 
size, the accuracy of both algorithms is about the same. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5.  Relative error in resonant frequency and CPU time ratio 
of ADI-FDTD,  vs. time step ratio ∆tADI /∆tFDTD. (The values of 
the above resonant frequencies obtained by conventional FDTD 
are 39.52GHz and 54.03GHz, respectively) 

IV. CONCLUSION 

A 3D ADI-FDTD algorithm has been implemented and 
compared with the conventional FDTD algorithm by using 
uniform and graded meshes. The ADI-FDTD algorithm is 
unconditionally stable, and the selection of the time step is 
not restricted by stability. However, the relative error in 
the ADI-FDTD result quickly increases with the increase 
of time step. The CPU time saving over conventional 
FDTD is not dramatic when the same computational 
accuracy is required. Furthermore, the memory 
requirement of the ADI-FDTD algorithm is about twice 
that of the conventional FDTD for the same mesh. 
Therefore, the choice between ADI-FDTD and regular 
FDTD depends mainly on the size of the acceptable error.  
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