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Abstract — 1In this paper, a 3D unconditionally stable
ADI-FDTD algorithm without the CFL stability constraint is
described. We have investigated the computational accuracy
and the CPU time of this method and compared it with
conventional FDTD for both uniform and graded meshes.
Since the ADI-FDTD algorithm is unconditionally stable, the
selection of the time step is not restricted by stability
considerations, but the relative error of the ADI-FDTD
algorithm increases with increasing time step. The numerical
results show that the saving in CPU time of the ADI-FDTD is
not dramatic in comparison with the conventional FDTD
algorithm when the mesh size and computational accuracy of
both methods are the same. The reduction in the number of
time steps and hence, CPU time, is offset by reduced
accuracy. Therefore, the choice of the ADI-FDTD method is
governed by the acceptable error.

1. INTRODUCTION

The finite—difference time—domain (FDTD) method is a
popular method due to its versatility and ability to provide
accurate predictions of electromagnetic field behavior. The
maximum time step is limited by the minimum spatial
discretization interval as defined by the Courant-Friedrich-
Levy (CFL) stability condition. However, there are some
important potential applications of the FDTD technique
where the CFL stability constraint is too restrictive,
particularly when the cell size needed to resolve the finest
geometric detail is very small.

The non-uniform grid FDTD algorithm is able to handle
such situations since it can easily conform to such fine
scale geometric details without substantially increasing the
overall mesh size and without losing computational
accuracy. However, the CFL stability constraint cannot be
relaxed. The maximum time step At is still determined
by the minimum spatial cell size. The At,, in turn,
determines the total number of time step needed to
complete the simulation.

To circumvent the stability constraint, the alternating
direction implicit finite-difference time-domain (ADI-
FDTD) method has recently been introduced for solving
electromagnetic wave problems [1-3]. The scheme is
based on an alternating direction implicit technique and
the conventional FDTD algorithm. Since this method is
unconditionally stable, the time step can be arbitrarily

chosen without regard for the CFL constraint [2,3]. This
technique has thus the potential to cut the number of time
step by several orders of magnitude. Unfortunately, the
simulating accuracy will decrease with increasing time
step. We therefore decided to investigate the
computational accuracy and CPU time of the ADI-FDTD
algorithm and to compare them with the performance of
the conventional FDTD algorithm. Both uniform and non-
uniform (graded) meshes were employed in this study.

II. THEORETICAL FORMULATION

The non-uniform FDTD algorithm is based on a
discretization of Maxwell’s equations in their integral form
in the non-uniform grid shown in Fig. 1.
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Fig. 1. Non-uniform discretization grid in two-dimension

In the ADI-FDTD algorithm, the conventional FDTD
update procedure leading from the nth time step to the
(n+1)th time step is broken up into two sub-steps. All field
components are computed with these two sub-steps:

(1) The first sub-step: The updating equations from the
nth time step to the (n+1/2)th time step are:

w2 n
E\‘ i+/2,jk T Ca i+l 2,/,kEx‘ i+1/2,j k +Cb i+1/2,j k
n+l/2 n+l/2 n n
Hz i+1/2,j+1/ 2.k _Hz i+1/2,j-1/2.k Hv i+1/2,) k+1/2 _Hy i+1/2,),k=1/2
Ahym 2.j.k Ahzi+l/2./.k

(1a)
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n+l/2 _ n
Ey N Ca i j+ 2,k Ey i+ 2,k + Cb i j+ 2,k
n+l/2 n+l/2 n n
Hx i, j+/2,k+1/2 _Hx ij+1/2,k-1/2 Hz 172,41/ 2,k _Hz i—1/2,j+1/2,k
Ahzi,/ﬂ,’l,k Ahxf,j+1/2.k
(1b)
n+l/2 _ n
Ez ijk+l/2 T Cu A‘,j,k+l/2Ez i k+1/2 + Cb i k+1/2
n+l/2 /2 n n
Hy /2, k2 Hy i-1/2,) k+1/2 x|i 2 k2 Hx ij-1/2,k+1/2
Ahx[,j,kﬂ,z Ahyi.j.kH/Z
(Ic)
n+l/2 _ n
Hx 0j+1/2,k+1/2 - Da i.j+l/2,k+l/2Hx i j+1/2,k+1/2 + Db i j+1/2,k+1/2
B n+l/2 n+l/2 n n
E: 2k Ey ij+1/ 2.k Ez ijtLk+/2 Ez ij k4172
i+ 2,k41/2 Ayi.j+l/2.k+l/2 (ld)
n+l/2 _ n
Hy i+1/2,jk+1/2 Da i+l/2,j,k+l/2Hy 172, k+1/2 + Db 172, k+1/2
N n+l/2 n+l/2 n n
Ez i+, k+1/2 _Ez i jk+1/2 Ex /2,5 k1 |2,k
i+1/2,),k+1/2 AZ:‘+I/2.].I¢+I/2 (le)
n+l/2 _ n
Hz 172,41/ 2k Da 112,41/ 2.k Hz 172,412,k +Da 172,412,k
n+l/2 n+l/2 n n
Ex 2,k Ex i+1/2,).k Ey L2k Ey i+ 2.k
Aym/ 2,41/ 2.k Axm/z_jﬂ/z,k (lf)
where
c 2, -0, At _ At
alijk = b|ij.k
2¢, ., 0, At 2, ., to, A
At
D, . =1 D)  =—
i, bli,j.k 2
ﬂi,j,k

In each of the above equations, the first finite-difference
on the right-hand side is evaluated implicitly from
unknown field data at the same time step n+1/2 as for the
left-hand side field component, while the second finite-
difference on the right-hand side is evaluated explicitly
from known field data at the time step n.

(2) The second sub-step: The updating equations from
the (n+1/2)th time step to the (n+1)th time step are:

n+l _ n+l/2
Ex /2, jk Cu i+1/2,).k Ex i+1/2,j.k + Cb i+1/2,j.k
n+l/2 n+l/2 n+l n+l
Hz 2,41/ 2k Hz i+1/2,j-1/2,k Hy i+1/2, k4172 Hv +1/2,j,k-1/2
Ahyi+l/2,/‘,k Ahzi+l/2,/.k

(2a)

ntl _ n+l/2
Ey ik Ca i+ 2,k Ey i+ 2,k + Cb i+ 2,k
n+l/2 n+l/2 n+l n+l
Hx Qg 2k+2 Hx ij+1/2,k-1/2 Hz /2,41 2k Hz i—1/2,j+1/ 2.k
Ahzi,j+l/2,k Ahxi.j+l/2,k
n+l _ n+l/2
Ez Qg2 T Ca i.j.k+l/2Ez ij k172 +Cb ij k12
H n+l/2 _H n+l/2 n+l _ n+l
y|i12,) k4172 y|i=1/2,jk+1/2 x| i,/ 2,k+1/2 x|ij-1/2.k+1/2
Ahxi.j.k+l/2 Ahyi,/,k+l/2
(2¢)
n+l _ n+l/2
Hx i/ 2,k+1/2 _Da i,j+l/2.k+l/2Hx 0,412,k +1/2 +Db i,j412,k+1/2
N n+l/2 n+l/2 n+l n+l
Ey L2k Ey i+ 2.k Ez QLA+ 2 Ez ijk+1/2
i1/ 2,k41/2 Ayi,j+l/2,k+l/2 (2d)
n+l _ n+l/2
Hy 2,/ k412 Da i+l/2.j,k+l/2Hy i+1/2,j.k+1/2 +Db +1/2,/,k+1/2
B n+l/2 n+l/2 n+l n+l
Ez k2 Ez ijk+1/2 Ex /2, k1 E)r +1/2,) k
+1/2,/,k+1/2 i+1/2,/,k+1/2 (26)
H ™ =D H |2 +D
2|2 02k — Halivarox 2|2, 402k b|i+1/2,j+1/2,k
N n+l1/2 n+l/2 n+l n+l
Ex i+1/2, 4k Ex i+1/2,).k Ey i+ 2k Ey i+ 2.k
Ayi+1/2,j+l/2,k Axi+l/2,j+l/2,k (Zf)

In each of the above equations, the second finite-
difference on the right-hand side is evaluated implicitly
from as-yet unknown field data at the same time step
(n+1) of the left-hand side field component, while the first
finite-difference on the right-hand side is evaluated
explicitly from known field data at the time step n+1/2
previously computed using (1).

The system of equations summarized above for each
sub-step cannot be directly used for numerical
computation because some field components on the right-
hand side of each equation are synchronous with the field
component solved on the left-hand side. But they can be
greatly simplified. For the first sub-step, this is done by
substituting the expressions of (1d-f) for the H-field
components evaluated at time step n+1/2 into the E-field
updating equations of (la-c). This yields new updating
equations for all E-field components. As an example, Eq.
(3) is the new updating equation for the £, component.

Similarly, for the second sub-step, this is done by
substituting the expressions of (2d-f) for the H-field
components evaluated at time step n+/ into the E-field
updating equations of (2a-c). This yields new updating
equations for all E-field components at the time step n+1.
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As an example, Eq. (4) is the new updating equation for
the E, field component.

b i,f+1/z,ka i,j+/2,k-1/2 Ch i+ 2,k b i j+1/2,k4172
(1+ ) n+l/2
x| i+1/2,).k
Ahyiﬂ/2,j,kAyi,j+1/2,k—l/2 Ahyiﬂ/2,j,kAyi,j+l/2.k+l/2
_ Cb ij+ 2,k Db |i+1/2,j-1/2.k wil/2
x| i+1/2,j-1k
Ahyi+1/z,f,kAyi+1,z,H/z,k
_ Cb i,j+ 2.k Dh i+1/2,j+1/ 2,k nel/2
x| i+1/2, j+1k
Ahyi+1/z,f,kAyi+1/2,,'+1,z,k
_ n
- Cu i+1/2,),k Ex i+1/2,j k
n n
C Hy /2, k4172 Hy i+1/2,).k-1/2 3
T i,k A ( )
ZHI/Z,/‘,/(
n n
Hz i+1/2,j+1/ 2.k _Hz i+1/2,j-1/2,k
+ Cb 4112,k A
Yis1/2.k
Cb i+1/2,j.k Db i+1/2,j+1/ 2,k [E N E|" ]
- Ah Ax ylivt ik — Hylij+2k
yi+l,2,/‘,k i+1/2,j41/2,k
Cb i+1/2,j,k Db i+1/2,j-1/2,k [ N El ]
+ Al Ax yli+j-12k6 — Hylig-12.k
Y2568 12,4126
Cb i+ 2,k Db ij+1/2,k=1/2 Cb 0412,k Db i,j+ 2,k +1/2 et
(1+ Al Az + A Az )Ex i+1/2,).k
Zi0112,j 6B j1/2,k-1/2 Zin112,56 8% jr1/2.k41/2
Cb i 2,k b |ivr2, k172 E |
- x|i+1/2,) k-1
Ahziﬂ/2,/‘,/:Azi+1/2,j,/c—1/2
Cb i,j+1/2.k Db i+1/2,7,k+1/2 n+l
- x| i+1/2,) k+1
Ahzi+l/2,/‘,kAZi+l/2,j,/c+l/2
_ n+l/2
- Cu i+1/2,j,kEx i+1/2,j,k
B /2 /2
C Hy /2, k42 Hy i+1/2,j,k-1/2 4
T2,k A ( )
Z 4102,k
n+l/2 n+l/2
Hz i+ 2,412k T2, -2k
+ Cb i+1/2,],k Ah
Y ir1)2,) 4
_ Cb i+1/2,).k Db i+1/2,j+1/ 2,k [ n+l/2 —E n+l/2 ]
2| i, k412 z|i,jk+1/2
Ahziﬂ/2,j,/;A'xi+l/2,/+1/2,/a
Cb 172,76 Hb|i+1/2,j-112,k [E wtl/2 _E|me ]
Ah Ax 2| i, ) k172 z|i,jk-1/2
Zir2,j kB2, 402k

Eq. (3) shows that the E, field component at the node
(i+1/2,j,k) is coupled with those at the node (i+1/2,j+1,k)
and the node (i+1/2,j-1,k). This leads to a set of

simultaneous equations for £, when written for each j
coordinate along a y-directed line through the space
lattice. The matrix associated with this system is
tridiagonal, and hence, can be easily solved. This process
is repeated for each y-cut through the grid where E,
components are located. All £ field components in both
sub-steps have the same characteristics.

The H field updating equations (1d-f) and (2d-f) are
now fully explicit because all of their required E field
component data at the time step n+1/2 and time step n+1
are available after all new E field updating equations have
been solved in the manner described above.

For the uniform grid ADI-FDTD algorithm, the Eq. (3)
and (4) can be further simplified by setting Ahx=Ax,
Ahy=Ay and Ahz=Az.

III. NUMERICAL INVESTIGATION

Since the ADI-FDTD is always stable [2,3], the
selection of the time step is no longer restricted by
stability, but the relative error of the ADI-FDTD scheme
increases with the time step chosen. To compare the
performance of the ADI-FDTD and conventional FDTD
algorithms, we have solved the two numerical examples
presented below. All simulations were performed on a 450
MHz Pentium-II with 128MB of memory under Windows
2000. The CPU times do not include the time used for
Discrete Fourier Transform (DFT) calculations.

A. Cavity Half-filled With Dielectric Material

A 7.112mm x 3.556mm x 5.334mm rectangular cavity
was modeled with both ADI-FDTD and conventional
FDTD. One half of the cavity was filled with air and the
other half with the dielectric material of relative
permittivity 2.22. For both algorithms, a uniform mesh
with Al =0.3556mm was used, yielding a mesh with
20x10x15 cells. A time step Atzprp=0.593ps was chosen
for the conventional FDTD, while several different time
steps At,p; were used with the ADI-FDTD to check its
accuracy. The physical simulation time of 10,000Atzprp
was kept the same in all cases. Fig. 2 shows the relative
error in the first two resonant frequencies obtained with
ADI-FDTD. The relative error affecting the conventional
FDTD algorithm was virtually the same as for ADI-FDTD
when the time steps were identical (At p~=Atpprp). Fig. 2
also shows the ratio of the CPU-time required by ADI-
FDTD and that required by the conventional FDTD. Fig. 2
shows that although the ADI-FDTD algorithm is
unconditionally stable, the relative error quickly increases
with the length of the time step. A reduction in the number
of time steps and hence, in the CPU time, is obtained at the
expense of a larger computational error.
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Fig. 2. Relative error in resonant frequencies, and CPU time
ratio of ADI-FDTD, vs. the time step ratio At,p; /Atgprp. (The
analytical values of the resonant frequencies are 34.87GHz and
49.70GHz, respectively)

B. Inhomogeneous Rectangular Cavity With Two Fins

The conventional FDTD algorithm with a non-uniform
mesh yields better accuracy than uniform meshing when
field singularities are present. Unfortunately, the maximum
stable time step is still limited by the smallest spatial
discretization interval. We compared the performance of
the regular FDTD and ADI-FDTD algorithms with a
graded mesh as well.

The geometry of the cavity is shown in Fig. 3. The
cavity was discretized by a smoothly graded mesh shown
in Fig. 4. The mesh size was 30x60x30 cells.
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Fig. 3 Inhomogeneous rectangular finline cavity
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Fig. 4 The graded mesh in the x-y cross-section

Fig. 5 shows the relative error in the first two resonant
frequencies obtained with ADI-FDTD. However, in this
case, the computational resonant frequencies obtained by
the conventional FDTD algorithm were considered as the
reference values. For comparison, the ratio of the required
CPU-times for ADI-FDTD and conventional FDTD is also

shown in Fig. 5. Both the relative error and the CPU time
are greatly reduced in the graded mesh. But the tendencies
of all curves are similar to those obtained in the uniform
mesh. When the ADI-FDTD is run with about 3 to 5 times
the time step of the conventional FDTD for the same mesh
size, the accuracy of both algorithms is about the same.
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Fig. 5. Relative error in resonant frequency and CPU time ratio
of ADI-FDTD, vs. time step ratio At,p;/Atrprp. (The values of
the above resonant frequencies obtained by conventional FDTD
are 39.52GHz and 54.03GHz, respectively)

IV. CONCLUSION

A 3D ADI-FDTD algorithm has been implemented and
compared with the conventional FDTD algorithm by using
uniform and graded meshes. The ADI-FDTD algorithm is
unconditionally stable, and the selection of the time step is
not restricted by stability. However, the relative error in
the ADI-FDTD result quickly increases with the increase
of time step. The CPU time saving over conventional
FDTD is not dramatic when the same computational
accuracy is required. Furthermore, the memory
requirement of the ADI-FDTD algorithm is about twice
that of the conventional FDTD for the same mesh.
Therefore, the choice between ADI-FDTD and regular
FDTD depends mainly on the size of the acceptable error.
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